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Abstract

Long chain-of-thought (CoT) significantly enhances large language models’ (LLM)
reasoning capabilities. However, the extensive reasoning traces lead to inefficien-
cies and an increased time-to-first-token (TTFT). We propose a novel training
paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to in-
terleave thinking and answering for multi-hop questions. We observe that models
inherently possess the ability to perform interleaved reasoning, which can be fur-
ther enhanced through RL. We introduce a simple yet effective rule-based reward
to incentivize correct intermediate steps, which guides the policy model toward
correct reasoning paths by leveraging intermediate signals generated during inter-
leaved reasoning. Extensive experiments conducted across five diverse datasets and
three RL algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent
improvements over traditional think-answer reasoning, without requiring external
tools. Specifically, our approach reduces TTFT by over 80% on average and im-
proves up to 19.3% in Pass@1 accuracy. Furthermore, our method, trained solely
on question answering and logical reasoning datasets, exhibits strong generaliza-
tion ability to complex reasoning datasets such as MATH, GPQA, and MMLU.
Additionally, we conduct in-depth analysis to reveal several valuable insights into
conditional reward modeling.

Question: Who was the director of the film that won the Academy Award for Best Picture five years after the Berlin Wall fell?

<think>First, I know that the Berlin Wall fell in
1989. So five years after that would be 1994. I
remember that The Matrix was a big hit back then,
so it's likely that The Matrix won the Best Picture
award. Since Lana Wachowski and Lilly
Wachowski are the directors of The Matrix, I think
this is the final answer.</think>

<answer>Lana Wachowski and Lilly Wachowski
directed The Matrix and won Academy Award
for Best Picture in 1994, five years after the
Berlin Wall fell in 1989.</answer>

<answer>The Berlin Wall fell in 1989.</answer>

<think>Okay, I need to recall when the Berlin Wall fell.</think>

<think> Now, let's do some math: 1989 + 5 = 1994.</think>

<answer>5 years after 1989 is 1994.</answer>

<think>Next, let's figure out the film won the rward in 1994.</think>

<think>Finally, let's find out who directed Forrest Gump.</think>

<answer>The director was Robert Zemeckis.</answer>

<answer>Forrest Gump won the reward in 1994.</answer>

Think-answer Reasoning Interleaved Reasoning

Reward: -1

Reward: +0.1

Reward: +0.1

Reward: +0.1

Reward: +1

Long
TTFT

Short
TTFT

Figure 1: Standard think-answer reasoning (left) completes the full chain-of-thought before generating
an answer, resulting in high TTFT and making credit assignment difficult during training when
intermediate steps contain errors (highlighted in yellow). Interleaved reasoning (right) alternates
between thinking and answering, enabling structured, easy-to-verify reward signals for better credit
assignment and significantly reducing TTFT.
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1 Introduction

Reasoning large language models (LLMs) [18, 13] have demonstrated advanced capabilities in
complex multi-hop tasks through long chain-of-thoughts (CoT) [50]. However, the standard “think-
answer” paradigm, where models must complete the full reasoning trace before generating answers,
introduces two critical limitations. First, it significantly increases time-to-first-token (TTFT), taking
seconds or minutes for answer generation. This breaks the interaction flow in real-time AI applications
such as conversational assistants, resulting poor user experience. Second, by delaying answer
generation until the reasoning concludes, models may follow incorrect intermediate steps, propagate
errors, and lead to inaccurate final answers and reasoning inefficiencies such as overthinking [6, 42]
and underthinking [49].

Humans naturally provide incremental feedback during conversations, signaling understanding even
as they formulate complete responses. Decomposing a complex problem into smaller steps is also the
de-facto approach for many reasoning tasks in LLMs [50, 21, 56, 2]. However, current reasoning
LLMs treat thinking and answering as strictly sequential processes – answers are available only after
reasoning concludes.

Currently, reinforcement Learning (RL) [20] is the dominant approach to convert a base LLM into a
reasoning LLM [22, 16, 13, 52]. Typically, the model is rewarded based on the correctness of the
final answer and adherence to the reasoning format. The intermediate reasoning traces are often
treated as a byproduct or unstructured chatter. In this work, we argue that such training paradigm
is worth revisiting, especially for multi-hop reasoning tasks. First, users rarely have the time or
cognitive bandwidth to thoroughly examine lengthy and often uninformative reasoning traces [44].
Yet, reasoning traces may include partial conclusions that are already beneficial to users; clearly
presenting these conclusions early can enhance interaction [30]. Second, in the cases where the
reasoning trace is not fully visible to the user, these partial conclusions can assist users in verifying or
validating the model’s final output. Third, these partial conclusions could also be utilized as dense
supervision signals to further improve model’s reasoning during training [27, 9]. Ideally, models
should iteratively switch between “think” and “answer” modes based on their understanding of the
problem and its complexity. However, effectively applying RL to induce such behavior remains
challenging. First, it is unclear whether models can learn and generalize interleaved behaviors across
various complex tasks. Second, effectively leveraging simple, rule-based rewards to detect sufficient
intermediate signals during training is largely under-explored.

To address these challenges, we introduce interleaved reasoning, a novel RL training paradigm
that enables LLMs to interleave thinking and answering, without leveraging any external tools. As
shown in Figure 1, interleaved reasoning model generates informative intermediate answers during
reasoning, giving timely feedback to the user (reducing TTFT) while providing verifiable reward
signal to guide its own subsequent steps toward a correct final answer. We conduct comprehensive
experiments on three popular RL algorithms (PPO [37], GRPO [38], and REINFORCE++ [17]),
and found that LLMs are inherently capable of answering questions in an interleaved manner, but
it is non-trivial to train them to systematically generate useful intermediate answers across diverse
tasks. We apply a simple yet effective rule-based reward to encourage models to generate informative
intermediate answers. We found that training only on question answering and logical reasoning
datasets, models are able to generalize and conduct interleaved reasoning to unseen tasks such as
MATH [15], GPQA [35], and MMLU [14]. We summarize our key contributions as follows:

• We propose a novel RL training paradigm that trains LLMs to alternate thinking and
answering, inherently reducing Time-to-First-Token (TTFT) by over 80% on average.

• We introduce a rule-based reward that provides consistent, dense feedback for intermediate
steps during training, guiding the model to stay on the correct thinking path and significantly
improving its reasoning capability, resulting in averagely up to a 19.3% Pass@1 improvement
over traditional think-answer reasoning.

• Our conditional reward strategy on intermediate reward allow us to train on datasets with
intermediate answers and generalize strongly to unseen reasoning tasks. Comprehensive
analysis reveals valuable and practical insights into reward modeling, stable RL training,
and model reasoning dynamics.
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2 Related Work

Reinforcement Learning for LLM Reasoning. In the context of LLMs, reinforcement learning
[20] is widely used for human preferences alignment [7, 33, 23]. Recently, RL’s usage has gradually
shifted towards enhancing LLM’s reasoning capabilities. Reward modeling is a strong means of
guiding a model to learn new skills during RL [40]. There are primarily two type of rewards used
during RL: Outcome Reward Model (ORM) and the Process Reward Model (PRM). DeepSeek R1
[13] demonstrates that simple rule-based ORM can significantly improve performance on challenging
reasoning tasks. PRM are often used to provide denser feedback on intermediate steps [28, 46, 48].
However, they face significant practical challenges - they often require human annotation for generated
output [28, 46], which inevitably introduces risks of reward hacking [34], requiring training a separate
reward model [48] and adding complexity to the training pipeline [13]. In this work, we leverage the
concept of PRM, but instead of relying on a separate learned model, we only use a simple rule-based
reward to capture intermediate signals. Unlike PRMs that generate feedback at each step during
rollout, our method operates more like an ORM while granting partial credit to the intermediate
answers. Discussions on the distinction between PRM and our method can be found in Section 5. We
leverage a conditional reward scheme similar to Yuan et al. [55]. However, instead of focusing on
reducing response length, our work focuses on improving the quality of intermediate reasoning.

LLM Reasoning and Efficiency. Research on enhancing LLMs’ reasoning capabilities has fol-
lowed several key directions. Early approaches focused on improving base or instruction-tuned
LLMs through techniques like chain-of-thought prompting [50], self-consistency [29], and few-shot
learning [3], while others explored structured reasoning through graph-based methods [2]. Another
line of work leverages external tools and APIs [25, 11, 5] to augment model capabilities. Recent
development in RL enable models like OpenAI-o1 [18] and DeepSeek-R1 [13] to generate long CoT
to improve their reasoning ability. This shift towards longer reasoning also results in inefficiency and
significantly increased latency and Time-to-First-Token (TTFT). Recent studies address this issue by
proposing more concise reasoning through techniques such as inference-time adjustments [54, 53, 43],
length control RL [1, 10, 55], or additional finetuning [31]. Interleaving between reasoning with
action using RL is also a newly emerged research area. Concurrent work mainly focuses on leveraging
external tools such as search engine [19, 4, 41, 26] during the reasoning process. In contrast, we
focus on model’s internal ability of generating verifiable intermediate answers, which can be later
used as additional reward signal for training.

3 Training LLMs for Interleaved Reasoning

In this section, we present our approach for training LLMs to interleave thinking and answering. We
first formalize the interleaving process and then describe our reinforcement learning formulation.

3.1 Multi-hop Problem Decomposition

We conceptualize the process of answering a multi-hop question as a sequence of resolved intermedi-
ate steps. A “sub-answer” is a distinct, user-facing piece of information or partial conclusion that the
model confidently derives at a given reasoning stage. The model should output a sub-answer when
it identifies that a self-contained part of the problem has been solved or a meaningful milestone in
reasoning has been reached. For example, in a multi-hop question, a sub-answer might resolve the
first hop and guide the next. In a mathematical problem, it could be an intermediate calculation. The
key is that each sub-answer is presented as a public and conclusive statement for that stage of the
reasoning, allowing the overall response to be built incrementally.

3.2 Thinking vs. Answering

The distinction between thinking and answering requires careful consideration. From a philosophical
perspective, thinking constitutes an integral component of answer formulation. However, from a
user experience standpoint, a model’s answer effectively begins when the first valid answer token is
generated. Based on their utility to the user, we define thinking as a private internal reasoning process
that is not accessible or useful to the user. In contrast, answering is the generation of public, finalized
conclusions that constitute a meaningful response to the user’s question. These conclusions may
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represent partial solutions to the overall problem, but they are presented as complete intermediate
steps that advance the user’s understanding or problem-solving process.

Formally, given user input x requiring N reasoning steps, the policy model πθ produces a sequence
y that alternates between thinking and answering segments. Let k ∈ {1, . . . , N} index the steps.
We denote the thinking segment by y

(k)
think and the corresponding answer segment by y

(k)
answer. The

interleaved generation thus is

y = y
(1)
think ◦ y

(1)
answer ◦ y

(2)
think ◦ y

(2)
answer ◦ · · · ◦ y(N)

answer, (1)

where ◦ denotes concatenation. The final answer to the original question is y
(N)
answer, whereas the

preceding answer segments {y(k)answer}N−1
k=1 are intermediate answers. The thinking segments y

(k)
think

guide the reasoning process but are not part of the user-visible answer for the time-to-first-token
(TTFT) calculation until the subsequent answer segment y(k)answer is produced.

3.3 Interleaved Reasoning Template

To guide the model in adopting the interleaved reasoning process, we use a specific instruction
template during training and inference. The template uses only two special tags: <think></think>
and <answer></answer> to explicitly ask the model to perform reasoning and provide answers
within each tag, respectively. We use the original template proposed in Guo et al. [13] for think-answer
reasoning (Appendix A). The complete interleaved template is shown in Table 1.

You are a helpful assistant. You reason through problems step by step before providing an answer. You
conduct your reasoning within <think></think> and share partial answers within <answer></answer>
as soon as you become confident about the intermediate results. You continue this pattern of
<think></think><answer></answer><think></think><answer></answer> until you reach the fi-
nal answer. User: prompt. Assistant:

Table 1: Template for interleaving thinking and answering. prompt will be replaced with the specific
reasoning question during training.

3.4 Reinforcement Learning for Interleaved Reasoning

We formulate the task of learning interleave reasoning as a reinforcement learning problem. During
RL, the policy model πθ generates sequences that maximize an expected reward while maintaining
generation quality. The objective function is:

max
πθ

Ex∼D,y∼πθ(·|x) [r(x, y)]− βDKL [πθ(y | x) ||πref(y | x)] , (2)

where D is the training dataset, πref(y | x) is the reference policy model, β is the KL divergence
coefficient, and r(x, y) is the reward function. Detailed hyperparameter choices are discussed in
Appendix B. We discuss the policy optimization in Section 4 and compare the performance of different
RL algorithms in Section 5. After training, the model should have learned how to dynamically switch
between them based on the given task at each step.

3.4.1 Rule-based Rewards

To effectively train the model to reason within the interleaved format, we utilize three rule-based
rewards: the format reward assesses whether the interleaved format is correctly followed and
properly completed; the final accuracy reward evaluates the correctness of the final answer; and the
conditional intermediate accuracy reward (or intermediate reward) provides additional rewards for
correct intermediate answers, applied conditionally based on training progress. Following previous
work [13, 19], our reward design avoids complex neural reward models, instead focusing on simple
rule-based reward that provide clear and consistent feedback without requiring separate reward model
training. We discuss the methods to apply the intermediate reward in Section 3.4.3. More details
about the rewards can be found in Appendix C.
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3.4.2 Models Are Quick Format Learner
Our initial experiments revealed that models in-
herently possess the ability to interleave think-
ing and answering. Base models (without RL
training) can generate intermediate answers by
directly applying the interleaved template, with
some reduced accuracy. Additionally, models
rapidly learn the structural format. As illustrated
in Figure 2, the format reward for both reasoning
methods quickly plateaus, whereas the accuracy
reward continues to improve. We also observe
that both reasoning methods achieve similar fi-
nal accuracy reward during training. The finding
suggests the main challenge is not stylistic ad-
herence but rather enhancing the quality of their
thought processes for different reasoning tasks.

Figure 2: The format reward rapidly reaches a
plateau during training, significantly faster than
the accuracy reward, suggesting that LLMs natu-
rally adopt structural patterns.

This motivates our focus on the reasoning itself: not for its structure per se, but for its potential to
improve the model’s reasoning by leveraging its explicit intermediate outputs as learning signals.

3.4.3 Conditional Rewards

Our finding shows that directly applying intermediate reward during training often leads to suboptimal
results, as the model may prioritize local correctness at the expense of final solution correctness (Sec-
tion 5). To effectively leverage the benefit of intermediate answers beyond shorter TTFT, we design a
conditional reward strategy that incentivizes the model to generate correct intermediate answers early,
in order to guide the reasoning toward the correct final answer. We apply a conditional reward scheme
where intermediate rewards are only invoked when the model demonstrates foundational competence
and shows meaningful learning progress during training. Specifically, the rewards are applied when
three conditions are met: (1) the final answer is correct, (2) the output format is valid, and (3) the
model shows improvement in the current training batch compared to previous one. The core idea is
to ensure that the model first masters the primary objective before optimizing for the sub-tasks of
generating correct intermediate steps. Formally, the conditional intermediate reward is defined as:

rintermediate(x, y) = 1(C) ·
N−1∑
k=1

Correct
(
y(k)answer

)
, (3)

where C = FormatCheck(y) ∧ Correct
(
y(N)

answer

)
∧

(
Acc(B) > Acc(B − 1)− ϵ

)
, (4)

where Acc(B) denotes the accuracy for the current training batch B, 1(·) is the indicator function,
Correct(y

(k)
answer) evaluates the answer correctness at step k, and ϵ is the threshold for training stability.

The batch accuracy criterion serves as a curriculum indicator, gradually introducing intermediate
rewards as training progresses. Therefore, the overall reward function is:

r(x, y) = rformat(y) + rfinal(x, y) + rintermediate(x, y), (5)

where rintermediate(x, y) is invoked only if all the aforementioned conditions are met. The full re-
ward definitions can be found in Appendix C. We discuss different approaches to calculating the
intermediate reward value in Section 3.4.4.

3.4.4 Intermediate Reward Calculation.

We explore different approaches to calculate intermediate reward under the conditional nature. While
all approaches use the conditional scheme described above, they differ in how they calculate the
actual reward value. We explore three approaches: (1) All-or-None, which requires all intermediate
steps to be correct in sequence; (2) Partial Credit, which gives partial credit for individual correct
intermediate steps; and (3) Time-Discounted, which assigns higher rewards to earlier correct
intermediate steps while assigning extra rewards to the all correct intermediate steps. Note that
the intermediate rewards calculation requires the intermediate ground truth answers. However,
despite training only on datasets with intermediate ground truths, we are able to generalize to other
unseen datasets (Section 4). We compare these approaches in Section 5, provide additional details in
Appendix C.2, and present the complete algorithm in Algorithm 1.
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4 Main Experiments

Datasets. We evaluate our method on both in-domain and out-of-domain datasets. For in-domain
datasets, we use Knights and Knaves (K&K) [51] and Musique [45] for both training and evaluation.
K&K is a logical reasoning dataset that requires multi-step reasoning to identify the correct characters.
It consists of multiple problem difficulty levels depending on the number of characters involved.
Musique is a multi-hop question answering dataset that requires retrieving and combining information
from multiple sources. Both datasets naturally contain subproblems and their ground truth. We leave
the exploration of dataset without intermediate ground truth for future work. For out-of-domain
evaluation, we test on GPQA [35], MMLU [14], and MATH [15] to assess how well our models
generalize to unseen tasks and domains. These datasets cover diverse reasoning scenarios, allowing
us to comprehensively evaluate the robustness of our approach. More details about the datasets are
provided in Appendix D.

Models and Baselines. We conduct experiments using Qwen2.5 instruct models with 1.5B and 7B
parameters. To comprehensively evaluate the effectiveness of our approach, we compare it against
verious baselines: Direct Inference, where the model generates answers without explicit reasoning
steps; Chain-of-Thought (CoT) [50], where the model performs all reasoning before generating the
final answer; SFT [8], where the model is trained with supervised fine-tuning; Think-answer, where
we train same model with the standard think-answer RL methods proposed in Guo et al. [13]. We
compare the baselines with two interleaved reasoning approaches: Interleave, our base approach
without intermediate rewards; and Interleave + IR, our main approach with conditional intermediate
rewards (IR) using time-discounted approach, as described in Section 3.4.3. For fair evaluation, we
use the same setup (eg., datasets, RL algorithms, etc.) for think-answer and interleaved training.

Evaluation Metrics. In this work, we use two key metrics: pass@1 accuracy (How many problems
are solved correctly) and time-to-first-token (TTFT) (How quickly the model provides answers to
users). Following previous work [32, 19], we use Exact Match (EM) to calculate the percentage of
correct final answers against the ground truth for pass@1 score. For each test instance, we compare
the model’s final answer against the ground truth answer after normalization. In conventional settings,
TTFT is typically measured in absolute time units (e.g., milliseconds). However, to apply it across
different reasoning approaches, we define TTFT as the relative position of the first answer token in
the complete response. More details on the evaluation metrics are provided in Appendix E.

Policy Optimization. To train the policy model, we experiment with three policy optimization
approaches: the traditional Proximal Policy Optimization (PPO) [37] and it’s two variants, Group
Relative Policy Optimization (GRPO) [38] and REINFORCE++ [17]. The primary distinction
between them lies in their approaches to advantage value estimation. Specifically, PPO utilizes a
network to approximate the state value function, leveraging the Generalized Advantage Estimation
[36] to derive the advantage. In contrast, GRPO and REINFORCE++ bypass the need for an extra
critic network and reduce the resources required during training, In practice, PPO is more stable
during training due to the need for a critic model, which requires additional warm-up steps before
effective training begins. On the other hand, GRPO and REINFORCE++ are sample efficient but
more sensitive to hyperparameters choices. We compare the performance of three optimization
methods and discuss the results in detail in Section 5.

Training Details. We use Proximal Policy Optimization (PPO) as our primary training algorithm,
as it provides more stable training compared to other RL algorithms. Different RL algrithm results
can be found in Table 4. To ensure a fair comparison, we train models up to 2,000 steps and report
the checkpoint that has the highest test score for both think-answer and interleaved training. For
intermediate reward calculation, we use the Time-Discounted method as it shows better performance
in our experiments (Detailed results can be found in Section 5). All experiments are conducted on
eight H100 GPU with 80GB memory. More training details are provided in Appendix B.

Main Results. The results in Table 2 demonstrate the benefits of interleaved reasoning. Our base
interleaved approach (Interleave), without using intermediate rewards, maintains Pass@1 accuracy
comparable to the traditional think-answer baseline while drastically reducing TTFT by an average
of 80.3% (1.5B) and 81.4% (7B). This means users receive informative responses nearly five times
sooner, highlighting that the interleaved structure itself enhances responsiveness by default. The
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Table 2: Main results: Comparison between proposed interleaved reasoning methods and baselines.
‡ and † represents in-domain and out-of-domain datasets, respectively. Higher Pass@1 (↑) is better,
while lower TTFT (↓) is better. The best performance is bold for Pass@1, underlined for TTFT. For
the non-reasoning baselines (Direct Inference, CoT, SFT) TTFT is naturally 0.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Qwen2.5-1.5B-Instruct
Direct Inference 0.060 0.000 0.115 0.000 0.051 0.000 0.081 0.000 0.278 0.000 0.117 0.000
CoT 0.097 0.000 0.195 0.000 0.066 0.000 0.167 0.000 0.308 0.000 0.167 0.000
SFT 0.223 0.000 0.290 0.000 0.046 0.000 0.112 0.000 0.263 0.000 0.187 0.000
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

Qwen2.5-7B-Instruct
Direct Inference 0.150 0.000 0.295 0.000 0.157 0.000 0.444 0.000 0.475 0.000 0.304 0.000
CoT 0.230 0.000 0.295 0.000 0.192 0.000 0.495 0.000 0.561 0.000 0.355 0.000
SFT 0.343 0.000 0.425 0.000 0.147 0.000 0.465 0.000 0.460 0.000 0.368 0.000
Think-answer 0.843 0.882 0.705 0.917 0.495 0.923 0.758 0.919 0.712 0.876 0.703 0.903
Interleave 0.803 0.133 0.735 0.155 0.505 0.182 0.769 0.199 0.707 0.173 0.704 0.168
Interleave + IR 0.877 0.129 0.750 0.167 0.551 0.166 0.803 0.178 0.732 0.167 0.743 0.161

Table 3: Delayed Intermediate Answers: Comparison between interleaved reasoning (providing
intermediate answers incrementally) versus the delayed version (providing intermediate conclusions
only after the full reasoning trace, similar to “think-answer”). Interleaved reasoning significantly
outperforms the delayed version, which suggests that timely, incremental feedback is crucial.

Method Use IR K&K‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Delayed intermediate
No 0.287 0.762 0.273 0.805 0.409 0.835 0.298 0.821 0.317 0.806
Yes 0.323 0.789 0.298 0.812 0.419 0.833 0.283 0.810 0.331 0.811

Interleave
No 0.357 0.118 0.308 0.181 0.429 0.189 0.288 0.163 0.346 0.163
Yes 0.533 0.132 0.489 0.192 0.460 0.211 0.313 0.157 0.449 0.173

significant improvement in Pass@1 accuracy occurs when intermediate rewards are introduced
(Interleave + IR), leading to an average relative improvement with of 19.3% (1.5B) and 5.7% (7B)
with TTFT reductions of 80.7% (1.5B) and 82.2% (7B). Moreover, training on only the datasets with
intermediate ground truth, our method exhibits strong out-of-domain generalization across diverse
reasoning tasks (GPQA, MMLU, and MATH), maintaining superior accuracy and reduced latency
without any training data from that domain. These findings clearly indicate the effectiveness of
interleaved reasoning in enhancing both model accuracy and utility in practical applications. We
present a qualitative analysis of interleaved reasoning in Appendix F and examples in Appendix H.

5 Analysis and Discussions

Impact of Intermediate Answers. Using the Qwen2.5-1.5B-Instruct model, we investigate how
intermediate answers influence model performance and training dynamics. First, as shown in
Figure 3(d), applying intermediate rewards during training leads to a clear increase in the number of
correct intermediate answers. This indicates that the reward signal effectively encourages the model
to produce more accurate sub-answers, which helps steer the model along more reliable reasoning
paths. Second, the timing of intermediate answers is critical. Table 3 compares our standard interleave
methods with a delayed intermediate variant where intermediate answers are generated only after
the full reasoning trace and before the final answer, both with and without Intermediate Rewards
(IR). The results across multiple datasets (K&K, GPQA, MMLU, MATH) clearly show that delaying
the presentation of intermediate answers substantially lowers Pass@1 accuracy and increases TTFT,
even when IR is applied. Furthermore, the benefits of IR are diminished in the delayed intermediate
setting. This suggests that timely, incremental feedback throughout the reasoning process is key to
the effectiveness of interleaved reasoning. Additional visualization and discussion in Section 5.
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Figure 3: Comparative analysis of interleaved reasoning: (a) Performance gap widens on harder
K&K problems as difficulty increases; (b) Training dynamics across different RL algorithms showing
convergence patterns; (c) Response length analysis revealing correct answers are typically shorter; (d)
Effect of intermediate rewards on model behavior showing increased correct intermediate answers.

Table 4: RL algorithm performance: Comparison between different RL algorithms. PPO yields
the best average Pass@1 as training steps increase and is more stable during training. GRPO and
REINFORCE++ are sampling efficient yet less stable.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

GRPO
Think-answer 0.387 0.878 0.690 0.755 0.333 0.805 0.419 0.795 0.374 0.897 0.441 0.826
Interleave 0.383 0.221 0.650 0.205 0.409 0.151 0.424 0.123 0.313 0.244 0.436 0.189
Interleave + IR 0.473 0.164 0.690 0.132 0.465 0.133 0.455 0.230 0.323 0.198 0.481 0.171

REINFORCE++
Think-answer 0.347 0.859 0.655 0.794 0.389 0.868 0.424 0.912 0.278 0.751 0.419 0.837
Interleave 0.437 0.202 0.645 0.234 0.270 0.113 0.434 0.163 0.354 0.104 0.428 0.163
Interleave + IR 0.493 0.148 0.720 0.186 0.439 0.123 0.429 0.146 0.348 0.204 0.486 0.161

PPO
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

Scaling to Harder Problems. The K&K dataset naturally contains multiple levels of problem
difficulty, with the difficulty increasing as more characters are involved. We train a Qwen2.5-1.5B-
Instruct model with datasets involving three, four, and five characters and evaluate on the full range
of difficulties (three through eight; see Appendix D dataset details). Figure 3(a) shows that the gap
between our method and the think-answer baseline widens as the difficulty increases. During logical
deduction, the model builds each deduction step upon the previous one; encouraging the model to
articulate and produce correct intermediate steps keeps the deductive chain intact and makes a correct
final conclusion more likely. This trend indicates that interleaved reasoning not only offers practical
speedups on TTFT but also improves overall reasoning, especially for harder multi-hop problems.

Different RL Algorithms. The results in Table 4 highlight the performance differences among the
three RL algorithms. PPO consistently achieves higher Pass@1 scores across most tasks, though it
generally requires more training steps to converge compare to other two, as shown in Figure 3(b).
Conversely, GRPO and REINFORCE++ demonstrate better sample efficiency, reaching competitive
performance more rapidly, but they are less stable during training, which aligns with the observation
from previous work [19]. Overall, PPO emerges as the more stable choice for interleaved reasoning,
especially when computational resources permit longer training durations, whereas GRPO and REIN-
FORCE++ provide viable alternatives. Note that across all algorithms, our method (Interleave + IR)
consistently outperforms the “think+answer” baseline, providing further evidence of its effectiveness.

Different Reward Strategies. We investigate the effectiveness of different intermediate reward
strategies in Table 5. Results demonstrate that directly applying intermediate rewards (Direct IR)
yields lower accuracy compared to not applying intermediate reward at all (No IR). This is likely
due to challenges in credit assignment inherent to reinforcement learning, where ambiguous reward
signals complicate the attribution of specific actions [24]. Conditional reward strategies (Section 3.4.3)
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Table 5: Reward strategy analysis: Directly applying intermediate reward yields suboptimal
performance. Time-discounted conditional intermediate rewards improve interleaved reasoning by
incentivizing early correct steps, outperforming direct and other conditional reward methods.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

No IR 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Direct IR 0.313 0.109 0.640 0.194 0.303 0.166 0.409 0.177 0.293 0.150 0.392 0.159
Cond. IR (Partial) 0.498 0.168 0.690 0.190 0.465 0.171 0.439 0.170 0.298 0.161 0.478 0.172
Cond. IR (All) 0.513 0.102 0.695 0.185 0.475 0.162 0.455 0.208 0.308 0.152 0.489 0.162
Cond. IR (Time) 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

significantly mitigate this issue by introducing intermediate rewards only when training is stable.
The All-or-None (All) method slightly outperforms Partial Credit (Partial), suggesting that enforcing
strict correctness criteria across intermediate steps better supports coherent reasoning paths than
rewarding individual correct steps independently. The Time-Discounted (Time) method achieves the
best performance. This result indicates that providing higher incentives for early correct reasoning
steps effectively guides the model toward accurate reasoning paths. More details about the reward
strategies are in Appendix C.

Intermediate Reward Distribution In addi-
tion to Figure 3(d), we present Figure 4 to vi-
sualize how frequently intermediate rewards are
applied during training. Notably, intermediate
rewards are primarily given in the early stages of
training. As training progresses and the batch ac-
curacy threshold rises, the application rate of in-
termediate rewards decreases. This implies that
only a modest amount of intermediate reward
is needed to effectively incentivize the model
to produce better intermediate steps and ulti-
mately improve final accuracy. The conditional
reward strategy thus works as intended: a fre-
quent, always-on intermediate reward is not nec-
essary – a targeted, conditional approach is suffi-
cient to guide the model.

Figure 4: Visualization of intermediate reward
application rate during training. The rate de-
creases as training progresses due to increasing
batch accuracy thresholds.

Reasoning Pattern Analysis We analyze the response length of interleaved reasoning and present
the results in Figure 3(c). We found that 7B and 1.5B models differ significantly in how their response
length changes during training. While both model sizes achieve better performance (Table 2), the
response length of the 7B model grows, whereas that of the 1.5B model becomes shorter. This
indicates that response length is not a reliable indicator of performance, aligning with recent findings
regarding the relationship between length and performance in reasoning LLMs [52, 47]. However,
for both the 1.5B and 7B models, correct answers are generally shorter than incorrect answers.
Consequently, the correct answers contain fewer thought tokens than the incorrect ones, suggesting
that the model finds the correct solution paths more efficiently. Additional analysis in Appendix G.

Comparison with Process Reward Models Our approach differs from Process Reward Models
(PRMs) in several key aspects. While PRMs typically provide token-level feedback during generation,
our method evaluates the entire trajectory after completion and assigns rewards based on identifiable
intermediate answers. This design choice helps avoid common PRM challenges such as reward
hacking and complex training pipelines while still providing meaningful feedback on intermediate
reasoning steps. Our results suggest that a simple rule-based reward can achieve similar benefits to
more complex PRM implementations, in terms of guiding the model towards correct solutions.
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6 Conclusion

We introduce interleaved reasoning, a novel reinforcement learning (RL) paradigm enabling reasoning
LLMs to alternate thinking with generating structural intermediate answers. Our comprehensive
experiments across five diverse datasets and three RL algorithms demonstrate significant practical
benefits: an over 80% reduction in time-to-first-token (TTFT) on average and up to a 19.3% improve-
ment in Pass@1 accuracy, without needing any external tools. We found that models are inherently
able to perform interleaved reasoning, and we can further enhance this capability via RL. We propose
a simple, rule-based conditional reward to incentivize correct intermediate steps and enhance the
model’s reasoning ability. The interleaved reasoning models, trained solely on logical reasoning
and QA, generalize strongly to complex, unseen tasks including MATH, GPQA, and MMLU. Our
analysis reveals several practical insights into reward modeling, RL training, and LLM reasoning
dynamics. Overall, interleaved reasoning offers a compelling path to build LLMs that are more
accurate and interactive.
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A Think-answer Template

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: prompt.
Assistant:

Table 6: Template for think-answer reasoning from Guo et al. [13]. prompt will be replaced with the
specific reasoning question during training.

B Additional Training Details

All experiments were conducted using VERL [39], an efficient reinforcement learning framework for
language models. We performed all experiments on 8 NVIDIA H100 GPUs with 80GB memory. We
also used a consistent set of hyperparameters to ensure fair comparison between methods. We evluate
and save every 100 steps during training, and continue training from the last saved checkpoint if the
training is interrupted (e.g., OOM). The core parameters are listed in Table 7.

Table 7: Training hyperparameters used for our experiments.

Parameter Value

Actor learning rate 1× 10−6

Critic learning rate 1× 10−6

Train batch size 16
Validation batch size 2048
PPO mini batch size 32
PPO micro batch size 16
Critic micro batch size 8
KL coefficient 0.001
KL loss type low variance KL
Max prompt length 3096 tokens
Max response length 2548 tokens
Sampling temperature 0.8
Number of samples per prompt 8
Stable training threshold (ϵ) 0.05
Critic warmup steps 0
Evaluation frequency 200 steps
Tensor model parallel size 2

C Reward Calculation

C.1 Individual Reward

Given the generated sequence y and the ground truth answer g = {g1, g2, ..., gN}, which contains all
intermediate and the final answer, we perform the reward calculation based on three main components:

1. Format Reward: This basic component evaluates the structural aspects of the generated
response. It checks whether the model properly alternates between thinking and answering
phases using the designated tags (<think></think> and <answer></answer>). The
reward is calculated as:

rformat(y) = λf ·
{
1.0 if format is correct
−1.0 if format is incorrect

(6)

where “correct” format means all tags are properly opened and closed, with proper alternation
between thinking and answering. This reward is applied to both think-answer and interleaved
reasoning.
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2. Final Accuracy Reward: This component evaluates whether the final answer provided by
the model matches the ground truth. We apply this reward only when the format is correct
and use exact match for evaluation:

rfinal(x, y) = λa ·


2.0 if y(N)

answer = gN

−1.5 if y(N)
answer ̸= gN

−2.0 if answer is not parseable
(7)

where gN is the final ground truth answer. For structured outputs (like numerical answers
or multi-choice questions), we normalize both the model’s answer and ground truth and
use exact match for evaluation. This reward is applied to both think-answer and interleaved
reasoning.

3. Intermediate Accuracy Reward: This component provides rewards for correct intermediate
answers, calculated using one of the three strategies discussed in Section 3.4.3. The
intermediate reward is applied conditionally, as detailed in Algorithm 1, and is only used for
interleaved reasoning.

C.2 Conditional Intermediate Reward

We provide detailed descriptions on three intermediate reward strategies in this section. The base
intermediate reward value Rbase is set to be 0.5 in this work. We present the full algorithm for interme-
diate reward calculation in Algorithm 1. Our evaluation in Section 5 shows that the Time-Discounted
strategy performs best overall, balancing the need for early correct answers with maintaining coherent
reasoning during the reasoning process.

1. All-or-None: This strategy requires all intermediate answers to be correct in sequence to
receive any reward. The reward calculation is:

rall-or-none
intermediate(x, y) =

{
Rbase if Correct

(
y
(k)
answer

)
, ∀k ∈ [1, N − 1],

0 otherwise
(8)

This strategy is the most demanding but ensures the model maintains a consistent reasoning
path throughout.

2. Partial Credit: This strategy rewards each correct intermediate answer independently,
providing partial credit regardless of other steps:

rpartial
intermediate(x, y) =

Rbase

N − 1

N−1∑
k=1

Correct(y(k)answer) (9)

This approach is more forgiving, allowing the model to recover from early mistakes while
still incentivizing correct intermediate steps.

3. Time-Discounted: This strategy awards the full base reward Rbase when every intermediate
answer is correct. If any intermediate answers are missing or wrong, the reward is shared
among the correct ones with higher weight on earlier appears correct answers. Formally,

rtime-disc
intermediate(x, y) =


Rbase, if Scorrect = g,

Rbase
1

|g|
∑

gj∈Scorrect

1

kj
, otherwise,

(10)

where Scorrect ⊆ g is the set of ground-truth intermediate answers that the model outputs
at least once, kj is the index of the first step in which the model’s answer matches gj , and
|g| is the total number of ground-truth intermediate answers. The harmonic weight 1/kj
gives greater credit to earlier correct answers while still granting some credit to later ones.
Note that the time-discounted partial reward calculation will not be used if all intermediate
answers are correct. Therefore the model receives a larger reward when all intermediate
answers are correct, and the reward quickly drops even if one intermediate answer is
incorrect. This design choice was intentionally made to strongly incentivize the model to
generate all correct intermediate steps, rather than being satisfied with partial correctness.
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Algorithm 1 Intermediate Reward Calculation

1: Input: Generated sequence y, ground truth intermediate answers g = {g1, g2, ..., gN}, current
training batch B, reward strategy S

2: Parameters: Base reward value Rbase, stable training threshold ϵ
3: Output: Intermediate reward value
4: Parse y to extract all intermediate answers yanswer = {y(1)answer, . . . , y

(N)
answer}, where y

(N)
answer is the

final answer
5: is_final_correct← Correct(y

(N)
answer)

6: is_format_valid← FormatCheck(y)
7: is_progressing← (Acc(B) > Acc(B − 1)− ϵ)
8: if is_final_correct AND is_format_valid AND is_progressing then
9: reward_sum← 0

10: if S = “All-or-None” then
11: all_correct← TRUE
12: for k = 1 to N − 1 do
13: if NOT Correct(y

(k)
answer) then

14: all_correct← FALSE
15: break
16: end if
17: end for
18: if all_correct then
19: reward_sum← Rbase
20: end if
21: else if S = “Partial Credit” then
22: for k = 1 to N − 1 do
23: if Correct(y(k)answer) then
24: reward_sum← reward_sum +Rbase/N
25: end if
26: end for
27: else if S = “Time-Discounted” then
28: correct_step← {} {Track all correct steps}
29: for k = 1 to N − 1 do
30: for each required answer gk in g do
31: if gj not in correct_step AND Correct(y

(k)
answer) then

32: correct_step[gj ]← i
33: end if
34: end for
35: end for
36: if |correct_step| = |g| then
37: reward_sum← Rbase
38: else
39: sum_weights←

∑
step∈correct_step 1/step

40: reward_sum← (sum_weights/|g|) ·Rbase
41: end if
42: end if
43: return reward_sum
44: else
45: return 0
46: end if
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D Dataset Details

D.1 In-Domain Datasets

Knights and Knaves (K&K). K&K is a logical reasoning dataset that requires multi-step reasoning
to identify the correct characters [51]. The dataset contains problems with varying difficulty levels
based on the number of characters involved. In our experiments, we use problems with 3, 4, and 5
characters for both training and evaluation. Each difficulty level consists of 900 training examples
and 100 test examples. To evaluate generalization across difficulty levels, we also test our models on
problems with 6, 7, and 8 characters, which were not seen during training (Figure 3(a)). Our results
indicate that interleaved reasoning is particularly effective for more challenging problems.

Musique. Musique is a multi-hop question answering dataset that requires retrieving and combining
information from multiple sources [45]. Problems in Musique are categorized by the number of
reasoning hops needed (i.e., 2-hop, 3-hop, 4-hop). For our experiments, we use 3-hop and 4-hop
questions, with 900 training examples and 100 test examples for each hop category. For efficient
training and inference, we select only up to 1,000 tokens in total for the context, which includes all
the supporting documents and a portion of distraction documents. Both K&K and Musique naturally
contain intermediate reasoning steps and ground truth, making them ideal for training and evaluating
interleaved reasoning approaches.

D.2 Out-of-Domain Datasets

GPQA. We use the GPQA-diamond version [35], which consists of 198 data points. GPQA
(Graduate-level Physics Questions and Answers) is a challenging benchmark designed to evaluate
LLMs on graduate-level physics problems, requiring advanced domain knowledge and multi-step
reasoning.

MMLU. We use MMLU-redux-2.0, a cleaned and reannotated version of MMLU from [12]. To
match with GPQA, we select a subset of 198 data points from domains requiring formal reasoning:
college computer science, college mathematics, abstract algebra, formal logic, college physics, and
machine learning.

MATH. We use 198 data points from the level 5 subset of MATH [15], which are the most
challenging problems within the dataset. These problems require complex mathematical reasoning
and often involve multiple steps of computation and logical deduction.

E Evaluation Metrics

E.1 Pass@1 Accuracy

Pass@1 accuracy measures the proportion of problems that the model solves correctly on its first
attempt. We follow the evaluation methodology established in prior work [50, 13, 19], using
Exact Match (EM) to determine correctness. For each test instance, we compare the model’s final
answer against the ground truth answer after normalizing both (removing punctuation, converting to
lowercase, and standardizing numerical formats). A prediction is considered correct only if it exactly
matches the normalized ground truth.

E.2 Time-to-First-Token (TTFT)

TTFT measures how quickly a model produces its first useful output to the user. While traditional
approaches measure TTFT in absolute time (milliseconds), we normalize TTFT as the ratio of the
first answer token’s position to the total response length to ensure fair comparison across different
model configurations and reasoning strategies:

TTFT =
Position of first answer token

Total response length
(11)
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This normalized metric ranges from 0 to 1, where lower values indicate faster initial responses. This
metric is particularly important for interactive applications where immediate response could vastly
improve user experience.

E.3 Substring Exact Match (SubEM) and Reward Hacking

We initially experimented with SubEM as an additional evaluation metric for intermediate answers.
SubEM is more lenient than EM – it measures whether the ground truth answer appears as a
substring in the model’s response. We found that models trained with SubEM quickly learned to
generate excessively long intermediate answers containing numerous potential responses, significantly
increasing the probability of including the correct answer somewhere in the text. For example, instead
of generating a concise intermediate step "The value is 42," models would produce verbose outputs
like "Let me consider different possibilities: the value is 41, the value is 42, the value is 43 ..." This
gaming behavior provided no pedagogical value and undermined the training.

This observation aligns with prior findings in reinforcement learning, where models exploit evaluation
metrics in unintended ways [52], which is as known as reward hacking. Therefore, we use EM as our
main evaluation metric.

F Qualitative Analysis of Interleaved Reasoning

To complement our quantitative findings on significant time-to-first-token (TTFT) reduction, we
conduct a qualitative evaluation using an LLM-based judge (gpt-4o-mini-2024-07-18) to assess
the value of interleave reasoning. Specifically, we compared two versions of the interleaved method
(with and without intermediate rewards) against the standard think-answer method. For each problem
that are solved correctly by all three methods (126 problems in total, 38 in-domain, 88 out-of-domain),
we presented the problem statement and the model responses to the LLM evaluator, asking it to rate
each answer on three criteria: (1) clarity and usefulness of intermediate steps, (2) timeliness and
informativeness of feedback, and (3) overall user experience. The LLM was instructed to mimic a
human evaluator and assign scores for each criterion and to select a winner between the two methods
for each example. The evaluation prompt is shown in Appendix F.1.

We calculate the win rates for each method, as shown in Table 8. Win rate is calculated as the
percentage of pairwise wins (excluding ties). The results show that the base interleaved method
(without intermediate rewards) had a lower win rate compared to think-answer, indicating that
not all intermediate answers were useful by default. However, when intermediate rewards were
used to encourage the model to produce more meaningful intermediate answers, the interleaved
method outperformed think-answer in terms of both win rate and qualitative scores, highlighting the
importance of intermediate rewards in enhancing the user experience.

Table 8: LLM-based qualitative evaluation: average win rates and average scores by domain.

Think-Ans vs. Interleave Think-Ans vs. Inter+IR

Dataset Group Think-Ans Win (%) Inter Win (%) Think-Ans Win (%) Interleave+IR Win (%)

In-domain 36.7 63.4 43.4 56.7
Out-of-domain 70.1 29.9 52.1 47.9
Overall 53.4 46.7 48.6 51.4

F.1 LLM-Judge Evaluation Prompt

The following prompt was used to instruct the LLM judge for qualitative evaluation:

Evaluation Prompt

You are an expert evaluator of large language model reasoning. You are given a multi-hop
problem and two model-generated answers. The first answer uses interleaved reasoning: it
alternates between thinking and answering, providing intermediate answers as soon as they
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are derived. The second answer uses the traditional think-answer reasoning: it completes all
reasoning before providing the final answer. For each answer, your task is to rate it on a scale
from 1 (very poor) to 10 (excellent) for each of the following criteria:

• Clarity and usefulness of intermediate reasoning steps
• Timeliness and informativeness of feedback (does the response help the user under-

stand the reasoning?)
• Overall user experience

Instructions:
• Assign a score (1-10) for each criterion for both answers.
• After scoring, briefly explain your reasoning for the scores.
• Respond in JSON as:

{
"interleave": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"think_answer": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"explanation": "<your reasoning for these scores>"

}

Problem:
<problem_text>

Interleaved Reasoning Answer:
<interleave_response>

Think-Answer Reasoning Answer:
<think_answer_response>

Table 9: Average response length for each reasoning method.

Dataset / Setting Think-Answer Interleave Interleave+IR

GPQA 414.55 314.95 433.22
K&K 710.58 316.05 401.08
MATH 491.24 297.49 500.32
MMLU 277.60 191.07 329.35
Musique 110.89 113.21 165.10

Overall average 400.97 252.79 368.73

Correct answers 198.11 207.56 308.31
Incorrect answers 445.75 259.09 380.27

G Additional Response Length Analysis

Table 9 shows the average number of tokens produced by each method on every dataset, as well as
the overall averages and the split between correct and incorrect responses. Interleaved reasoning
produces the longer traces after applying intermediate rewards (Interleave+IR), though the traditional
think-answer method generates longest answers in general. Pure interleaving (Interleave) is the most
concise across the board. We also observe that shorter reasoning does not hurt accuracy: although

20



interleave reasoning produces the fewest tokens, it matches or exceeds Think-answer on every dataset
(see main results in Table 2). Additionally, for every training recipe and model size we evaluated,
correct solutions are consistently shorter than incorrect ones. This suggests that once the model has
found a reliable path it stops generating unnecessary thoughts, whereas failure cases often involve
extra turns spent exploring.

H Case Studies of Interleaved Reasoning

We present case studies to gain a deeper understanding of interleaved reasoning. We focus on
Qwen2.5-1.5B-Instruct that was trained using PPO and the Time-Discounted reward strategy. We
present the examples from both in-domain (K&K, Musique) and out-of-domain (MATH, MMLU,
GPQA) datasets. The model successfully generalizes to unseen, complex problems, demonstrating its
ability to break down problems into logical steps, provide intermediate conclusions, and arrive at
final answers. Green for correct answers and red for incorrect answers.

MATH

The model successfully decomposes the problem into smaller steps and correctly computes
the final answer.

Question:
Expand the product (x− 2)2(x+ 2)2. What is the product of the nonzero coefficients of the
resulting expression, including the constant term?
Ground Truth: -128
Interleaved Reasoning:
<think>First, let’s expand the product step by step. We start with the expression (x−2)2(x+
2)2. We can simplify this by recognizing that (x− 2)(x+ 2) = x2 − 4. So, the expression
becomes (x2 − 4)2.</think>
<answer>(x2 − 4)2</answer>
<think>Next, we need to expand (x2 − 4)2. This is a square of a binomial, which can be
expanded using the formula (a− b)2 = a2 − 2ab+ b2.</think>
<answer>(x2 − 4)2 = x4 − 8x2 + 16</answer>
<think>The expanded form of the expression is x4 − 8x2 + 16. The nonzero coefficients
are 1, -8, and 16. We need to find the product of these coefficients.</think>
<answer>The product of the coefficients 1, -8, and 16 is 1×−8× 16 = −128.</answer>
<think>The final answer is:</think>
<answer>-128</answer>

MATH

A failed case: the model follows the interleaved structure but makes a calculation error in step
4, resulting in an incorrect final answer. However, with interleaved reasoning, the incorrect
intermediate answer can potentially be spotted early by users.

Question:
Let f(x) be the polynomial

f(x) = 3x4 + 5x2 − 9x− 2.

If g(x) is equal to the polynomial f(x− 1), what is the sum of the coefficients of g?
Ground Truth: -2
Interleaved Reasoning:
<think> First, we need to find the polynomial g(x) by substituting x−1 into f(x). </think>
<answer> f(x) = 3x4 + 5x2 − 9x− 2 </answer>
<think> Second, we substitute x− 1 into f(x) to get g(x). </think>
<answer> g(x) = 3(x− 1)4 + 5(x− 1)2 − 9(x− 1)− 2 </answer>
<think> Third, we expand g(x) to find the polynomial in standard form. </think>
<answer> g(x) = 3(x4−4x3+6x2−4x+1)+5(x2−2x+1)−9(x−1)−2 </answer>
<think> Fourth, we simplify g(x) to find the coefficients. </think>
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<answer> g(x) = 3x4− 12x3+24x2− 24x+3+5x2− 10x+5− 9x+9− 2 </answer>
<think> Fifth, we combine like terms to get the polynomial in standard form. </think>
<answer> g(x) = 3x4 − 12x3 + 29x2 − 43x+ 15 </answer>
<think> Sixth, we find the sum of the coefficients of g(x). </think>
<answer> 3− 12 + 29− 43 + 15 = −4 </answer>
<think> Seventh, the final answer is:</think>
<answer> -4 </answer>

Knights and Knaves

The model successfully breaks down a multi-hop logic puzzle, providing correct intermediate
conclusions at each step, and arrives at the correct final answer.

Question:
A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 5 inhabitants: Victoria, Mia, Sebastian, Ethan, and Olivia.
"Mia is a knave and Ethan is a knave" - Victoria.
Mia said that If Mia is a knight then Sebastian is a knave.
Sebastian expressed that Victoria is a knave if and only if Ethan is a knave.
Ethan remarked, "Sebastian is a knight or Victoria is a knave".
"Sebastian is a knight and Sebastian is a knave" - Olivia.
So who is a knight and who is a knave?
Ground Truth: (1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan
is a knight (5) Olivia is a knave
Interleaved Reasoning:
<think> First, consider Victoria’s statement: ’Mia is a knave and Ethan is a knave’. This
must be a lie because an implication can only be true if both conditions are false. </think>
<answer> Victoria is a knave </answer>
<think> Second, consider Sebastian’s statement: ’Victoria is a knave if and only if Ethan is
a knave’. Since Victoria is a knave (from our previous deductions) and Sebastian is a knight
(since he always lies), Sebastian must be a knight. </think>
<answer> Sebastian is a knight </answer>
<think> Third, consider Mia’s statement: ’If Mia is a knight then Sebastian is a knave’.
Since Mia is a knight (since she always lies) and Sebastian is a knight (since he always lies),
Mia must be a knave. </think>
<answer> Mia is a knave </answer>
<think> Fourth, consider Ethan’s statement: ’Sebastian is a knight or Victoria is a knave’.
Since Sebastian is a knight (since he always lies) and Victoria is a knave (since she always
lies), Ethan must be a knight. </think>
<answer> Ethan is a knight </answer>
<think> Fifth, consider Olivia’s statement: ’Sebastian is a knight and Sebastian is a knave’.
This must be a lie because an implication can only be true if both conditions are simultaneously
true, which is impossible. </think>
<answer> Olivia is a knave </answer>
<think> So, the final answer is:</think>
<answer>(1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan is a
knight (5) Olivia is a knave</answer>

Musique

The model sequentially solves each sub-question, yielding the correct final answer. Occasion-
ally, the model provides intermediate answers that are duplicates of the final answer, which is
not ideal.

Question:
Where does Plymouth rank in population among the cities of the country having a gallery
displaying the painting named The Woman Taken in the main subject of milkman joke?
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Ground Truth: 30th
Interleaved Reasoning:
<think> First, identify the country where Plymouth is located. </think>
<answer> United Kingdom </answer>
<think> Second, identify the painting named The Woman Taken in Adultery. </think>
<answer> The Woman Taken in Adultery </answer>
<think> Third, identify the gallery displaying this painting. </think>
<answer> National Gallery </answer>
<think> Fourth, determine Plymouth’s ranking in population among the cities of the United
Kingdom. </think>
<answer> 30th </answer>
<think> Fifth, state the final answer. </think>
<answer> 30th </answer>

MMLU

The model translates logic formulas stepwise, mapping each part to natural language and
selecting the correct answer.

Question:
Use the following key to translate the given formula of PL to natural, English sentences.
A: Marina reads a Percy Jackson book.
B: Izzy plays Minecraft.
C: Emily stops working.
D: Russell makes dinner.
E: Ashleigh stops by.
∼ (A ⊃ B) · (B ⊃∼ E)
A) It’s not the case that Marina’s reading a Percy Jackson book entails that Izzy plays
Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh doesn’t stop by.
B) If Marina doesn’t read a Percy Jackson book, then Izzy plays Minecraft, which entails that
Ashleigh doesn’t stop by.
C) Marina’s reading a Percy Jackson book does not entail that Izzy plays Minecraft, but Izzy
plays Minecraft provided that Ashleigh doesn’t stop by.
D) It’s not true that Marina reads a Percy Jackson book only when Izzy plays Minecraft, but
Izzy plays Minecraft only when Ashleigh stops by.
Ground Truth: A
Interleaved Reasoning:
<think>First, identify the logical structure of the given formula. The formula is a conjunc-
tion of two main parts: ∼ (A ⊃ B) and (B ⊃∼ E). The symbol ⊃ represents material
implication ("entails", "if...then...", "only when"), ∼ represents negation ("not", "it’s not the
case that"), and · represents conjunction ("and", "but").</think>
<answer>The formula is ∼ (A ⊃ B) · (B ⊃∼ E).</answer>
<think>Second, translate the first part of the conjunction: ∼ (A ⊃ B). A ⊃ B translates to
"Marina reads a Percy Jackson book entails Izzy plays Minecraft" or "If Marina reads a Percy
Jackson book, then Izzy plays Minecraft." The negation ∼ (A ⊃ B) means "It is not the case
that (Marina reads a Percy Jackson book entails Izzy plays Minecraft)."</think>
<answer>∼ (A ⊃ B) translates to "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft."</answer>
<think>Third, translate the second part of the conjunction: (B ⊃∼ E). B translates to "Izzy
plays Minecraft." ∼ E translates to "Ashleigh doesn’t stop by." So, B ⊃∼ E translates to
"Izzy plays Minecraft entails that Ashleigh doesn’t stop by" or "If Izzy plays Minecraft, then
Ashleigh doesn’t stop by."</think>
<answer>(B ⊃∼ E) translates to "Izzy’s playing Minecraft does entail that Ashleigh doesn’t
stop by."</answer>
<think>Fourth, combine the translations of the two parts with a conjunction (e.g., "but"
or "and"). The overall formula ∼ (A ⊃ B) · (B ⊃∼ E) combines these two state-
ments.</think>
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<answer>Combining the parts: "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh
doesn’t stop by."</answer>
<think>Fifth, compare this translation with the given options to select the correct one. Op-
tion A matches our translation. Option B incorrectly translates ∼ (A ⊃ B) as "If Marina
doesn’t read a Percy Jackson book, then Izzy plays Minecraft". Option C incorrectly translates
(B ⊃∼ E) as "Izzy plays Minecraft provided that Ashleigh doesn’t stop by", which would
be (∼ E ⊃ B). Option D incorrectly translates (B ⊃∼ E) as "Izzy plays Minecraft only
when Ashleigh stops by", which would be (B ⊃ E). Therefore, option A is the correct
translation.</think>
<answer>The final answer is: A</answer>

MMLU

The model successfully applies interleaved reasoning to derive and combine gradients step by
step, leading to the correct answer.

Question:
Suppose we have the following objective function: argminw

1
2∥Xw− y∥22 + 1

2γ∥w∥
2
2. What

is the gradient of 1
2∥Xw − y∥22 + 1

2λ∥w∥
2
2 with respect to w?

A)∇wf(w) = (XTX + λI)w −XT y + λw
B) ∇wf(w) = XTXw −XT y + λ
C) ∇wf(w) = XTXw −XT y + λw
D) ∇wf(w) = XTXw −XT y + (λ+ 1)w
Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the objective function and the terms involved. The objective
function is given by:</think>
<answer>the objective function is 1

2∥Xw − y∥22 + 1
2γ∥w∥

2
2</answer>

<think>Now, let’s break down the terms:</think>
<answer>the terms are 1

2∥Xw − y∥22 and 1
2γ∥w∥

2
2</answer>

<think>Next, we need to find the gradient of the first term 1
2∥Xw − y∥22 with respect to w.

Recall that the gradient of ∥z∥22 with respect to z is 2z. So, the gradient of 1
2∥Xw − y∥22

is:</think>
<answer>the gradient of 1

2∥Xw − y∥22 is XT (Xw − y)</answer>
<think>Now, let’s find the gradient of the second term 1

2γ∥w∥
2
2 with respect to w. The

gradient of ∥w∥22 with respect to w is 2w. So, the gradient of 1
2γ∥w∥

2
2 is:</think>

<answer>the gradient of 1
2γ∥w∥

2
2 is γw</answer>

<think>Now, we can combine these gradients to find the gradient of the entire objective
function:</think>
<answer>the gradient of the entire objective function is XT (Xw − y) + γw</answer>
<think>Now, let’s compare this with the given options:</think>
<answer>The correct option is A)∇wf(w) = (XTX + λI)w −XT y + λw</answer>

GPQA

The model answers the problem step by step, ruling out distractors and resulting in the correct
final answer.

Question:
In the lab, a chemist discovers an unnamed bottle with a white solid inside. He gathers the
following spectral information in order to identify the liquid. Make a reasonable structural
suggestion for the unidentified drug using the information provided.
Mass: molecular ion peak at m/z = 156 (100%)
a peak at m/z = 158 (32%)
IR : broad peak from 3500-2700 cm−1, strong sharp peak at 1720 cm−1
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1H NMR: 11.0 ppm (s, 1H), 8.02 ppm (d, 2H), 7.72 (d, 2H)
A) Phenyl chloroformate
B) 2-chlorobenzoic acid
C) 3-Chloro-2-hydroxybenzaldehyde
D) 4-chlorobenzoic acid
Ground Truth: D
Interleaved Reasoning:
<think>First, analyze the Mass Spectrum data. A molecular ion peak (M+) at m/z = 156 and
an M+2 peak at m/z = 158 with an intensity ratio of approximately 100:32 (or 3:1) is char-
acteristic of a compound containing one chlorine atom (35Cl/37Cl isotopic abundance). The
molecular weight of C7H5ClO2 is approximately 156.5 g/mol (using 35Cl), which matches
the M+ peak. All given options have this molecular formula.</think>
<answer>The mass spectrum indicates a molecular weight of approximately 156 and
the presence of one chlorine atom. All options (Phenyl chloroformate, 2-chlorobenzoic
acid, 3-Chloro-2-hydroxybenzaldehyde, 4-chlorobenzoic acid) have the molecular formula
C7H5ClO2.</answer>
<think>Second, analyze the IR Spectrum. A very broad peak spanning 3500-2700 cm−1

is highly characteristic of the O-H stretch of a carboxylic acid, which is broadened due to
hydrogen bonding. The strong, sharp peak at 1720 cm−1 is characteristic of a C=O (carbonyl)
stretch, consistent with a carboxylic acid (typically 1700-1725 cm−1). This strongly suggests
the presence of a -COOH group.</think>
<answer>The IR spectrum strongly suggests the presence of a carboxylic acid group (-COOH)
due to the broad O-H stretch (3500-2700 cm−1) and the C=O stretch (1720 cm−1).</answer>
<think>Third, analyze the 1H NMR Spectrum. The signal at 11.0 ppm (singlet, 1H) is highly
deshielded and is characteristic of a carboxylic acid proton (-COOH). The signals at 8.02
ppm (doublet, 2H) and 7.72 ppm (doublet, 2H) are in the aromatic region. A pattern of two
doublets, each integrating to 2 protons, is indicative of a para-substituted benzene ring. The
two protons of one type are chemically equivalent, and the two protons of the other type are
also chemically equivalent, and they are ortho to each other respectively.</think>
<answer>The 1H NMR spectrum shows a carboxylic acid proton at 11.0 ppm and a
para-substituted benzene ring pattern (two doublets, each 2H, at 8.02 ppm and 7.72
ppm).</answer>
<think>Fourth, evaluate the options based on the combined spectral data: A) Phenyl chloro-
formate: Contains an ester-like C=O and an acid chloride C-Cl. IR for C=O in R-O-CO-Cl is
typically higher (around 1760-1780 cm−1). It lacks the carboxylic acid O-H and the acidic
proton at 11.0 ppm. B) 2-chlorobenzoic acid: Is a carboxylic acid, consistent with IR and
the 11.0 ppm NMR signal. However, an ortho-substituted benzene ring (1,2-disubstituted)
would typically give a more complex pattern for the 4 aromatic protons (e.g., 4 distinct signals
or complex multiplets), not two doublets of 2H each. C) 3-Chloro-2-hydroxybenzaldehyde:
Contains an aldehyde and a phenolic -OH. An aldehyde C=O IR is plausible ( 1720-1740
cm−1), but the broad O-H from 3500-2700 cm−1 points to a carboxylic acid, not typically a
phenol (phenols are usually sharper, 3200-3600 cm−1). The aldehyde proton (-CHO) signal
is typically around 9-10 ppm. The aromatic region for a 1,2,3-trisubstituted benzene would
show 3 distinct aromatic protons. D) 4-chlorobenzoic acid: Is a carboxylic acid. This fits
the IR data (broad O-H, C=O at 1720 cm−1) and the NMR signal at 11.0 ppm (-COOH).
It is a para-substituted benzene ring (chlorine at position 4, carboxylic acid at position 1).
This substitution pattern gives rise to two sets of equivalent aromatic protons (H-2/H-6 and
H-3/H-5), which would appear as two doublets, each integrating to 2H. This perfectly matches
the NMR signals at 8.02 ppm and 7.72 ppm.</think>
<answer>Comparing the spectral interpretations with the options: A) Phenyl chloroformate is
inconsistent with IR (no broad O-H) and NMR (no signal at 11 ppm). B) 2-chlorobenzoic acid
is inconsistent with the aromatic NMR pattern (would not be two doublets of 2H each). C)
3-Chloro-2-hydroxybenzaldehyde is inconsistent with IR (carboxylic acid O-H unlikely) and
NMR (aldehyde H at 9-10 ppm, different aromatic pattern). D) 4-chlorobenzoic acid is fully
consistent with all spectral data: MS indicates C7H5ClO2, IR indicates a carboxylic acid, and
1H NMR indicates a carboxylic acid proton and a para-substituted benzene ring.</answer>
<think>The final answer is therefore 4-chlorobenzoic acid.</think>
<answer>D) 4-chlorobenzoic acid</answer>
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GPQA

A failed case: the model occasionally fails to follow the interleaved structure. The model also
sometimes generates shorter thinking and longer answers than necessary.

Question:
Reaction of solid A with 8 equivalents of gas B forms bright red product C.
When C reacts with 2 equivalents of gas D, it produces the extremely hazardous product E.
C reacts with water to reform A plus two different acids F and G. F is a strong acid while G is
a weak acid.
D reacts with B in a 1:1 ratio to form H, which is used as a solvent. What is the molecular
symmetry group of E?
A) C2v

B) D4h

C) D∞h

D) C2

Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the products and their properties:</think>
<answer>The products are C, E, F, and G. C is a bright red product, E is an extremely
hazardous product, F is a strong acid, and G is a weak acid. D reacts with B in a 1:1 ratio to
form H, which is used as a solvent.</answer>
<think>Next, let’s analyze the reaction of C with water to reform A plus two different acids
F and G:</think>
<answer>The reaction of C with water to reform A plus two different acids F and G is a
typical acid-base reaction. Since C is a bright red product, it is likely a metal oxide or a metal
hydroxide. When it reacts with water, it will form a metal hydroxide and a metal ion, which
will then react with the acid to form the two different acids F and G.</answer>
<think>Now, let’s consider the reaction of E with D to produce H:</think>
<answer>The reaction of E with D to produce H is a typical acid-base reaction. Since E is an
extremely hazardous product, it is likely a strong acid. When it reacts with D, it will form H,
which is used as a solvent.</answer>
<think>Finally, let’s determine the molecular symmetry group of E:</think>
<answer>The molecular symmetry group of E is D∞h. This is because E is an extremely
hazardous product, which suggests that it has a high degree of symmetry. The D∞h group has
16 symmetry operations, including 8 mirror planes and 8 axes of inversion. This group is also
known as the point group D4h, but the presence of an infinite number of axes of inversion
makes D∞h a more appropriate choice.</answer>
<answer>C) D∞h</answer>
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